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Abstract 

 

Background:  Scientific evidence has shown an association between particulate matter exposure 
and adverse human health impacts.  Accurately predicting near-road PM2.5 concentrations is 
therefore important for project-level transportation conformity and health risk analyses.   
 
Methods:  This study assessed the capability and performance of three dispersion models, 
CALINE4, CAL3QHC, and AERMOD, in predicting near-road PM2.5 concentrations.  The 
comparative assessment included identifying differences among the three models in terms of 
methodology and data requirements.  An intersection in Sacramento, California and a busy road 
in London, United Kingdom were used as sampling sites to evaluate how model predictions 
differed from observed PM2.5 concentrations.     
 
Results:  Screen plots and statistical tests indicated that, at the Sacramento site, CALINE4 and 
CAL3QHC performed moderately well, while AERMOD under-predicted PM2.5 concentrations.  
For the London site, both CALINE4 and CAL3QHC resulted in over-predictions when 
incremental concentrations due to on-road emission sources were low, while under-predictions 
occurred when incremental concentrations were high.  The street canyon effect and receptor 
location likely contributed to the relatively poor performance of the models at the London site.   
 

 
* With the U.S. Federal Highway Administration; other authors are with the U.C. Davis-Caltrans Air Quality Project.
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1 Introduction 

1.1 Problem Statement 

Particulate matter (PM), also called particulates or fine particles, is a mixture of tiny solid 

and/or liquid particles.  PM, especially those with a diameter less than or equal to 2.5 µm 

(PM2.5), can be inhaled through the respiratory tract and cause adverse health impacts.  

Scientific evidence has shown a clear association between PM2.5 and several human health 

problems.  For example, Englert (Englert, 2004) and Kappos et al. (2004) reviewed the 

epidemiological studies for PM and concluded that long‐term exposure to a high concentration 

of PM2.5 increases the risk of acute and chronic respiratory infection, lung cancer, 

arteriosclerosis and other cardiovascular diseases, while short‐term PM2.5 exposure exacerbates 

existing pulmonary and cardiovascular diseases.  To better protect public health, in 2006 the US 

Environmental Protection Agency (EPA) revised the 24‐hour PM2.5 standard from 65 µg/m3 to 

35 µg/m3 (USEPA, 2006).   

 

The composition of PM2.5 may change temporally and spatially; therefore, its toxicity varies.  

PM2.5 from vehicle emissions is associated with adverse health problems (Adar et al., 2007; Kim 

et al., 2004; Kok et al., 2006; Ryan et al., 2007; Tonne et al., 2007; Vliet et al., 1997).  Brugge 

(2007) estimated that, “approximately 11% of US households are located within 100 meters of 

4‐lane highways”, where vehicle emissions are the major source of PM2.5.  Because monitoring 

PM2.5 concentrations cannot be done for all near‐road regions, using appropriate models with 

vehicle and meteorological information to estimate near‐road PM2.5 concentrations is essential. 
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1.2 Study Objectives 

Air dispersion models used to estimate gas concentrations are used for predicting near‐road 

particle concentrations.  In this study, the capabilities and features of three dispersion models, 

CALINE4, CAL3QHC and AERMOD, are evaluated.  Specifically, the research objectives are to 

examine the performance of the three models individually based on their predictions of PM2.5 

concentrations at two sites, an intersection of Florin Road and Stockton Boulevard in 

Sacramento, California and a busy road in London, United Kingdom.  Hypotheses, such as 

whether the model over or under‐predicts the concentrations, whether the model under‐

prediction increases with observed concentration, and whether the three models are 

significantly different, are tested.  The research aims to identify the models that are appropriate 

for predicting near‐road PM2.5 concentrations. 

 

1.3 Organization of the Report 

This report consists of six chapters and one appendix.  Chapters 1 and 2 introduce the research 

background, clarify the study objectives and review previous related studies.  Chapter 3 

introduces and compares the three models from the theoretical perspective.  Chapters 4 and 5 

evaluate the three models through their performances at two sites.  Chapter 6 summarizes the 

major results of this study and discusses future research.  The appendix provides step‐by‐step 

instructions to run the three models. 
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2 Literature Review 

2.1 Negative Impact of PM2.5 and the Role of Vehicle PM2.5 Emissions 

Studies show a relationship between PM exposure and adverse human health impacts, 

regarding fine particles (PM2.5), as well as coarse particles (PM2.5‐10).  The US EPA, in the report 

“Particulate Matter Research Program: Five Years of Progress” (2004b), reviewed critical studies 

of PM and found that ambient PM2.5 exposure is associated with morbidity and mortality 

caused by respiratory and cardiovascular diseases.  

 

Because PM2.5 is a complex mixture of organic and inorganic components, its composition 

varies temporally and spatially.  Jerrett and Finkelstein (2005) showed that the toxicity of PM2.5 

varies for different States throughout the United States.  Davidson et al. (2005) showed that 

health problems are associated with particle size and composition.  Schlesinger (2007) 

examined the toxicity of common inorganic components of PM2.5 and found clear adverse 

biological effects from some secondary acidic sulfates.  He also indicated that different 

components were responsible for different adverse health outcomes.   

 

Research has also shown that PM2.5 that originated from vehicle emissions falls in the toxic 

category (Kok et al., 2006).  Adar et al. (2007) conducted a study in suburban St.  Louis, Missouri 

for elders and found a negative association between PM2.5 and heart rate variability; the short‐

term association was mainly limited to traffic‐related PM2.5 rather than PM2.5 from other 
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sources.  Other studies showed a relationship between near‐highway PM2.5 and childhood 

asthma, lung cancer, myocardial infarction and other health problems (Kim et al., 2004; Ryan et 

al., 2007; Tonne et al., 2007; Vineis, 2006).   Therefore, knowing the PM2.5 concentrations in 

regions near motorways is essential.  

 

2.2 Dispersion Models – Brief Literature Review 

There are various gas dispersion models.  Holmes and Morawska (2006) reviewed previous 

studies which measured both gas and PM concentrations at the same time and concluded that 

gas and PM concentrations correlated quite well in an open environment.   

 

The most widely used air dispersion models are the Gaussian models, which are based on two 

modified Gaussian distributions of the plume in the vertical and horizontal directions.  Three 

Gaussian models, CALINE4, CAL3QHC and AERMOD, are used to predict near‐road PM2.5 

concentrations in this study.  CALINE4 has been widely used in California to evaluate 

transportation project‐level air quality impacts; CAL3QHC is designed for carbon monoxide (CO) 

and PM concentrations and is one model suggested by EPA for dispersion modeling; AERMOD is 

an additional EPA‐recommended model for dispersion modeling.  All three models have been 

widely used to model gaseous pollutants.  They have also been used to model PM 

concentrations in some limited applications. 
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2.2.1 CALINE4  

The CALINE4 model is widely used to predict near‐road vehicle emissions.  This model has been 

tested and validated for predicting concentrations of several vehicle‐emitted pollutants near‐

road under certain conditions, such as CO, oxides of nitrogen (NOx), and additional gases.   

 

Loranger et al. (1995) showed that CALINE4 predicted near‐road CO concentrations well, but 

under‐predicted manganese (Mn) concentrations.  Broderick et al. (2005) examined CALINE4’s 

performance of modeling transportation‐related CO for a free‐flowing motorway and a 

periodically congested roundabout in Ireland and concluded that CALINE4 functioned well 

under stable atmospheric conditions but performed poorly under low wind conditions.   

 

Marmur and Mamane (2003) showed that CALINE4, together with emission factors predicted 

by COPERT III, is suitable for near‐road NOx concentration prediction in open urban and rural 

sites in Israel, though this conclusion may not be extended to dense urban center locations.  

Levitin et al. (2005) showed that CALINE4 performed well for near‐road NOx and nitrogen 

dioxide (NO2) concentrations prediction.  Kenty et al. (2007) showed CALINE4 predicts NOx 

concentration well, but under‐predicts NO2 concentrations probably due to assumptions 

imbedded in the model.   

 

Jones et al. (1998) showed that CALINE4 predicts well for daytime 12‐hour average 

concentrations of transportation related benzene, toluene, ethylbenzene and xylene in urban 

areas.  Broderick and O’Donoghue (2007) examined CALINE4’s capability in predicting 
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transportation related emissions of seven inert gases – n‐Pentane, Iso‐pentane, Ethene, 

Propene, 1,3‐Butadiene, Acetylene and Benzene under low wind speeds and  showed that 

CALINE4, together with emission factors predicted by COPERT III, gives good long‐term 

estimations but underestimates higher percentile concentrations when evaluating short‐term 

conditions. 

 

CALINE4 has also been tested in predicting particle concentrations in two studies.  Gramotnev 

et al. (2003) used a modified version of CALINE4 to estimate motor vehicle emission factors of 

fine and ultrafine particles near a busy road in the Brisbane area in Australia.  Employing the 

resulting emission factors, they found that the CALINE4 model results matched the observed 

rate of dispersion with distance from the road well.  Findings in the second study were mixed: 

CALINE4 performed well for an intersection in Sacramento site but not for urban road in 

London site (Yura et al., 2007) [note that this study reevaluates the same sites examined by 

Yura et al.]. 

 

2.2.2 CAL3QHC 

CAL3QHC is designed for CO and PM concentration prediction.  Studies to date on model 

performance have been mixed.  Moseholm et al. (1996) showed that CAL3QHC yielded 

unsatisfying results under conditions involving low wind speeds and nearby tall buildings.  Not 

unsurprisingly, Zhou and Sperling (2001) note that mixed traffic (bicycles and vehicles) and 

near‐road high‐rise buildings will cause CAL3QHC to poorly predict CO concentrations.  An 

extensive evaluation of the CAL3QHC model was provided in a National Cooperative Highway 
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Research Program study (Carr et al., 2002) as part of the development of the Hybrid Roadway 

Intersection model (HYROAD).  This report documents poor model performance at ten sites 

across the country, 3 where intensive CO monitoring was conducted plus an additional 7 with 

less intensive monitoring.  However, CAL3QHC was shown to perform well generally in open 

areas with moderate traffic volumes (Abdul‐Wahab, 2004) and along moderately trafficked 

suburban roads (Kho et al., 2007).  CAL3QHC has also been used with somewhat less success to 

estimate both transportation‐related PM2.5 and PM10 (Gokhale and Raokhade, 2008) – in which 

the predicted concentrations did not match the measured concentrations well.  PM dispersion 

from non‐traffic sources may have been a main contributor to this mismatch. 

 

2.2.3 AERMOD 

AERMOD can be used for predicting the concentrations of various pollutants emitted by point, 

line and area sources.  This model is typically used for large areas (Faulkner et al., 2007; Hanna 

et al., 2006; Jampana et al., 2004; Kumar et al., 2006; Stein et al., 2007; Touma et al., 2007) or 

stationary sources (Orloff et al., 2006; Seigneur et al., 2006).  Kesarkar et al. (2007) used 

AERMOD to estimate PM10 concentrations over the city Puna in India and found that the model 

generally underestimated PM10 concentrations except for residential areas.  Zhang et al. (2008) 

used AERMOD to estimate PM10 concentrations in the urban area of Hangzhou, China and 

found that AERMOD underestimated concentrations; the authors noted that model 

performance may have been related to lack of consideration of construction and secondary 

particles.  Although the model has not been widely used in predicting near‐road pollutant 
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concentrations, EPA recommends AERMOD to evaluate near‐road concentrations (USEPA, 

Accessed July 10, 2008) and thus it is included in this study.   

 

2.2.4 PM Prediction by Other Models 

There are other models that have been used to predict PM2.5 or PM10 concentrations.  Gokhale 

and Raokhade (2008) used CALINE3 and the ‘Modified General Finite Line Source Model’ (M‐

GFLSM) to estimate transportation related PM2.5 and PM10 concentrations and found that both 

of them performed worse than CAL3QHC generally.  Vardoulakis et al. (2007) used three 

dispersion models, WinOSPM (a Windows‐based version of OSPM), ADMS‐Urban 2.0 and 

AEOLIUS Full, to estimate vehicle PM10 emissions from two streets in Birmingham and London 

for one year and the models gave good estimates for PM10.  The reason for the good match 

partly relies on the high percentage of background concentration, which comprises 

approximately 80% of the total PM10 concentration.  Bowker et al. (2007) used the ‘Quick Urban 

and Industrial Complex’ (QUIC) model to estimate the concentration of ultra fine particles near 

I‐440 in Raleigh, North Carolina, and found that the predicted concentrations have a similar 

pattern to the measured concentrations. 
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3 Model Description 

CALINE4, CAL3QHC and AERMOD are all Gaussian models.  They are based on two modified 

Gaussian distributions of the plume in the vertical and horizontal directions.  In addition, all 

three models are steady‐state models; that is, the models assume that the dispersion process 

takes no time to achieve the steady state.  The material and equations presented in this chapter 

are based on available model documentation. 

 

3.1 CALINE4 

CALINE4 is the most recent version of the CALINE model series developed by the California 

Department of Transportation.  It embeds the concept of mixing zone and uses modified 

Gaussian distributions (Benson, 1984).  CALINE4 uses a series of equivalent finite line sources to 

represent the road segment, and models the whole region of finite line sources as a zone with 

uniform emissions and turbulence.  The concentration at a point with coordinates  is 

calculated based on equation (3‐1). 

 (3‐1)
where  is the linear source length,  is the wind speed,  and  are the horizontal and 

vertical Gaussian dispersion parameters,  is the source height,  and  are the ‐

coordinates of finite line source endpoints.   
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Among all the variables,  is a function of the ‐coordinate of the point where the 

concentration is calculated and horizontal wind angle standard deviation;  is modified by 

incorporating the effects of vehicle‐induced heat. 

 

3.2 CAL3QHC 

CAL3QHC is an enhanced version of CALINE3 with an additional algorithm that estimates the 

lengths of vehicular queues at signalized intersections (USEPA, 1995).  Thus, CAL3QHC can 

incorporate the emissions from idling vehicles as well as free‐flow traveling vehicles; although 

the idling portion of the model was not evaluated as part of this study (refer to section 4.3).  

The dispersion process formulated in CAL3QHC is the same as that in CALINE4 by applying 

equation (3‐1).  However, CAL3QHC uses atmospheric stability to estimate the horizontal 

dispersion parameter ( ), and the vertical dispersion parameter ( ) is not modified by the 

vehicle‐induced heat algorithm (Benson, 1992).   

 

3.3 AERMOD 

AERMOD incorporates the concept of planetary boundary layer (PBL) (USEPA, 2004a) – the 

lowest part of the atmosphere and its characteristics that are directly affected by the earth’s 

surface.  There are two types of PBL: Stable Boundary Layer (SBL) and Convective Boundary 

Layer (CBL).  SBL occurs when the earth’s surface is colder than the air above, usually during the 

night; and CBL otherwise.  Whether the PBL is SBL or CBL, and the parameters of the boundary 

layers, are determined by AERMET, a meteorological preprocessor used with AERMOD. 
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In SBL, two independent horizontal and vertical Gaussian distributions are used for modeling 

pollutant dispersion, the same as is used in CALINE4 and CAL3QHC.  In CBL, the horizontal 

distribution is still Gaussian; however, the vertical distribution is a bi‐Gaussian distribution 

(Cimorelli et al., 2005) and the concentration is calculated as a weighted average of two 

Gaussian distributions; this is the main difference between AERMOD and CALINE4/CAL3QHC.  

The concentration at a point with coordinates  is calculated based on equation (3‐2): 

 (3‐2)
where  and , with the subscripts  and  refer to convective and stable 

conditions, respectively, and denote the pollutant from the horizontal plume state and the 

terrain‐following state, respectively, where  is the height of the point above stack base and  

is the height of the point above local ground, and  is the plume state weighting function, 

calculated based on equation (3‐3): 

 (3‐3)
where  is the critical dividing streamline height. 

 

 can be calculated based on equation (3‐4), where  can be either  or : 

 
(3‐4)

where  is the source emission rate,  is the effective wind speed,  is the horizontal 

Gaussian dispersion parameter, which is a function of non‐dimensional distance,  is the total 
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vertical dispersion parameter,  is the plume height, and  is the effective mechanical 

mixing height. 

 

 can be calculated as shown in equation (3‐5), where  can be either  or : 

 (3‐5)
where , , and  denote pollutants from direct, indirect and 

penetrated sources, respectively.  They are calculated based on equations (3‐6), (3‐7) and (3‐8), 

respectively: 

 
(3‐6)

where  is the fraction of source material that remains trapped in the CBL,   and  are 

the effective source height of the direct source and vertical dispersion parameter, with  

equals to 1 or 2 corresponding to each of the Gaussian distribution used in the bi‐Gaussian 

distribution,  is the weighting coefficient for each of the distribution, with  and  sum to 1, 

and  is the mixed layer height in the CBL; 

 
(3‐7)

where  is the effective source height of the indirect source, and other parameters are the 

same as in equation (3‐6); 

 
(3‐8)
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where  is the vertical dispersion coefficient,  is the source height of the penetrated 

source, and other parameters the same as in equations (3‐4) and (3‐6). 

 

3.4 Data Requirements 

To estimate near‐road PM2.5 concentrations, all three models need vehicle‐related data, 

meteorological information and data such as link geometry and receptor locations (see Table 3‐

1).  Vehicle‐related data mainly include traffic volumes and vehicle emission factors.  They are 

used as direct inputs in CALINE4 and CAL3QHC, and they are used to calculate source emission 

rates together with source type and geometry information in AERMOD.  CAL3QHC has a queue 

algorithm as an optional function, which requires additional traffic data. 

 

CALINE4 and CAL3QHC have almost the same requirements for meteorological data, while 

AERMOD requires much more detailed meteorological information.  For example, AERMOD 

requires upper air sounding data including atmospheric pressure, dry bulb temperature, dew‐

point temperature, and wind direction and wind speed at several levels above sea level.  Ideally, 

when ample meteorological data are available, AERMOD may replicate atmospheric conditions 

better than CALINE4 or CAL3QHC.  However, AERMOD also increases the complexity of model 

runs and parameter specifications due to relatively intensive data needs. 
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Table 3‐1 Data Requirements of CALINE4, CAL3QHC, and AERMOD  

Where:     √ = required input;   = optional input;   ■ = required for CAL3QHC’s queue algorithm. 

 CALINE4 CAL3QHC AERMOD 
Vehicle‐Related Data    

Traffic Volume √ √ √ 
Emission Factor √ √ √ 
Average Total Signal Cycle Length  ■  
Average Red Total Signal Cycle Length  ■  
Clearance Lost Time  ■  
Approach Volume on the Queue Link  ■  
Idle Emission Factor  ■  
Saturation Flow Rate  ■  
Arrival Rate  ■  

Meteorological Data    
Wind Speed √ √ √ 
Wind Direction √ √ √ 
Wind Direction Variation √   
Dry Bulb Temperature √ √ √ 
Wet Bulb Temperature    
Dew‐Point Temperature    
Atmospheric Stability Class √ √  
Surface Roughness √ √ √ 
Midday Albedo   √ 
Daytime Bowen Ratio   √ 
Total/Opaque Sky Cover   √ 
Sky Cover at layer 1,2,3,4    
Relative Humidity    
Precipitation Amount    
Precipitation Type    
Horizontal Visibility    
Cloud Type    
Sea Level Pressure    
Station Pressure    
Upper Air Sounding   √ 

Other Data    
Source Height √ √ √ 
Mixing Zone Width √ √ √ 
Link Geometry √ √ √ 
Receptor Coordinates √ √ √ 
Settling Velocity √ √  
Deposition Velocity √ √  
Longitude and Latitude   √ 
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4 Case Study – Background and Model Setup 

4.1 Study Area 

Data from two sampling sites are used to evaluate the capabilities of the three models in this 

study.  One is the intersection at Florin Road and Stockton Boulevard in Sacramento, California 

(see Figure 4‐1); the other is on Marylebone Road, London (see Figure 4‐2).   

 Figure 4‐1  Sacramento Site Layout  
 

Adapted from Vicente J.  Garza (Ashbaugh et al., 1996). 
There are three receptors, two at location D1 with the height of 3m and 9m, respectively, and one at D3 
with the height of 3m.  In the reference frame shown in the figure, the x,y – coordinates of D1 and D3 
are (18.3m, 19.4m) and (74.5m, 75.6m), respectively.  The two angles are 16° for θ and 45° for φ. 
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Florin Road has seven lanes and its width is 26m.  Stockton Boulevard has six lanes and its width 

is 22m.  Both links extended 150m (Ashbaugh et al., 1996) from the center of the intersection 

and are considered in the model analyses, i.e., two links of 300m.  By convention, if there is no 

immediate barrier at sides of the road, the region within 3m at each side of the road is also 

considered as the emission source (Benson, 1984, pp.160).  Therefore, two rectangles are 

considered as sources in this situation.  The area of the Florin Road rectangle is 300m times 

32m, with the coordinates of the four corners being (‐150m, ‐16m), (‐150m, 16m), (150m, 16m) 

and (150m, ‐16m).  The area of the Stockton Boulevard rectangle is 300m times 28m, with the 

coordinates of the four corners (‐27.9m, 148.0m), (‐54.8m, 140.3m), (27.9m,  ‐148.0m) and 

(55.8m, ‐140.3m) (see reference x‐y axis frame shown in Figure 4‐1). 
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 Figure 4‐2  London Site Layout  
 

From http://maps.google.com. 

The reference frame is shown in the figure.  The receptor’s coordinates in the reference frame is (0, ‐
13.5m), and the receptor’s height is 3m. 
 

Marylebone road has six lanes with a width of 22m.  The link extending 200m (Yura et al., 2007) 

from the origin is considered in the models; that is, 400m in total. Similarly, as in the 

Sacramento site, 3m at each side of the road is also considered as part of the source.  

Therefore, the source rectangle considered in the model is of area 400m times 28m and with 

the coordinates of the four corners (‐200m, ‐14m), (‐200m, 14m), (200m, 14m) and (200m, ‐

14m) in the reference frame shown in Figure 4‐2. 
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4.2 Observed PM2.5 Concentrations 

For the Sacramento site, observed concentrations from ten time periods were compared with 

model predictions.  Table 4‐1 shows the background PM2.5 concentration, as well as the 

increment, which is the concentration observed at the receptor minus the background 

concentration.  The background concentrations vary by time period only; for a given time 

period, background is assumed to be the same at different locations.  The increments reflect 

the effect of traffic‐related PM2.5 emissions on the receptors. 

 Table 4‐1  PM2.5 Concentrations (µg/m3) at the Sacramento Site  
ID Time 

Background 
concentration 

Increment at 
D1 (3m) 

Increment at 
D1 (9m) 

Increment 
at D3 (3m) 

1 8/23 12:00 – 16:00 6.245 4.225 0.685 1.065 
2 8/23 16:00 – 19:00 6.765 6.435 1.575 2.085 
3 8/24 6:00 – 10:01 13.07 4 0 0.84 
4 8/24 11:43 – 16:00 10.8 13.1 1.59 2.17 
5 8/24 16:00 – 20:55 10.635 3.355 1.265 0 
6 8/24 20:55 – 8/25 5:55 15.43 2.11 0 1.8 
7 8/25 5:55 – 10:01 14.8 4.02 0 8.03(i) 
8 8/25 21:00 – 8/26 5:56 10.68 1.08 0 1.17 
9 8/26 5:56 – 10:00 11.275 1.985 0.175 2.005 

10 8/26 16:06 – 19:00 9.67 1.27 0.48 0.66 
Source: the above table uses information available from Ashbaugh et al.’s paper (1996). 

 
(i): This data is considered to be a measurement error.  The reason is that it is much larger than the 
increment concentration at D1(3m) at the same time period, and much larger than the increment 
concentrations at D3(3m) at other time periods.  This data point is not used in the model evaluation. 
 
 

Data in Table 4‐1 suggest that the increments are relatively small compared with the 

background concentrations.  The background proportion exceeds 70% for most samples, 

regardless of the value of the total concentration (see Figure 4‐3).  Since the models estimate 
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the incremental concentration directly, the large background concentrations will tend to 

improve model performance when total concentrations are considered (background plus 

increment).  Therefore, the comparison was conducted for both with‐background and without‐

background scenarios. 

  
(a) 

 
(b) Figure 4‐3  Background Proportion Plots (Sacramento Case) 

(a) The whole bar is the total PM2.5 concentration and the dark part is the background concentration.  
(b) The corresponding background proportion among the total concentration.  For both plots, samples 
are in the order of increasing total concentration. 
 

For the London site, observed concentrations from 253 hours during the time period from July 

31, 1998 to July 17, 2000, are used.  The data are selected based on associated meteorological 

information (Yura et al., 2007).  Similarly as in the Sacramento case, the increments are also 
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relatively small when compared with the background concentrations.  Therefore, as with the 

Sacramento case study, concentrations with and without background are considered in the 

model comparisons.   

 

4.3 Model Inputs 

Because detailed intersection information (e.g., signal data, idling emissions, and traffic delays) 

is unavailable for both sites, the queuing algorithm embedded in the CAL3QHC model was not 

used.  In addition, AERMOD was not used for the London site, because upper air sounding data 

and sky cover information were lacking for the monitoring events.   

 

The surface roughness is set to be 100cm for both sites since they are in urban areas.  The 

midday Albedo and daytime Bowen ratio required for AERMOD are set to be 0.16 and 2.0, 

respectively, according to AERMOD’s User Guideline (USEPA, 2004c).  Two important 

parameters are discussed below. 

 

4.3.1 Emission Factor (EF) 

Two methods were used for quantifying emission factors.  In the Sacramento case, a steady‐

state box model was used.  The model assumes a virtual box over the road segment and the 

pollutant concentration is uniform inside the box.  The emission factor is calculated as shown in 

equation (4‐1):   
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 (4‐1)
where  is the wind speed (m/s),  is the height of the mixing box (m),  is the measured 

pollutant concentration (µg/m3),  is the wind direction (degrees),  is the number of vehicles 

per hour, and the calculated emission factor is of the unit of gram per vehicle kilometer 

traveled (g/VKT)  (Ashbaugh et al., 1996).  The box model is used in the Sacramento case so that 

the calculated emission factors reflect both free‐flow and idling vehicle emissions. 

 

In the London site, the emission factor is calculated as a weighted average over different 

vehicle categories as shown in equation (4‐2).  The emission factors of light‐duty vehicles and 

heavy‐duty vehicles are shown in Table 4‐2: 

 (4‐2)
where the subscripts  and  denote ‘light‐duty vehicle’ and ‘heavy‐duty vehicle’, 

respectively, and  is the vehicle number. 

 Table 4‐2  Emission factors of PM2.5 (g/VKT)  
Year 1998 1999 2000 

Light‐duty vehicle 0.0268 0.0260 0.0225 
Heavy‐duty vehicle 0.418 0.358 0.279 

Source:  (Yura et al., 2007). 
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4.3.2 Deposition and Settling Velocities 

PM2.5 can be removed from the atmosphere by dry deposition, precipitation scavenging, and/or 

chemical reactions.  In both case studies, models are used on days without precipitation and we 

also do not consider the chemical reactions of PM2.5; only dry deposition is considered.   

 

Dry deposition is mainly due to gravitation, turbulent diffusion and Brownian motion (Hanna et 

al., 1982, pp 67‐71).  By Stokes’ law, the terminal settling speed ( ), which is due to gravitation, 

can be calculated based on equation (4‐3): 

 (4‐3)
 where  is the particle radii,  is particle density, and  is dynamic viscosity of air 

( ).  In the two case studies, the concentration of PM2.5 is estimated, so 

the particle radii is no more than 1.25 µm, also the particle densities are no more than 60 

µg/m3 in both case studies, so the calculated terminal settling speed is no more than 

, which is very small and is negligible.  The dry deposition by turbulent 

diffusion and Brownian motion are also negligible because of the low particle densities.  

Therefore, the deposition velocity and settling velocity are set to be 0 as model inputs. 
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5 Case Study – Results and Analysis 

Model estimations from CALINE4, CAL3QHC and AERMOD at the Sacramento site, and from 

CALINE4 and CAL3QHC at the London site, were compared with measured concentrations.  In 

order to see how the models performed, screen plots and statistical tests were used.  For the 

sake of convenience, let  (where  represents the model: 1 – CALINE4, 2 – CAL3QHC, and 3 – 

AERMOD; and  is the sample ID, ) denote the difference between the model‐

predicted concentrations and the observed concentrations. 

 

5.1 Screen Plots and Descriptive Statistics 

5.1.1 Factor-of-Two Plots 

The “Factor‐of‐two” plot is a classical method to examine model performance.  Typically, if 80% 

of the points fall inside the factor‐of‐two envelope, the model results are considered good in 

predicting true values (Yura et al., 2007, pp.8752). 

 

Figure 5‐1 and Table 5‐1 show that all points are inside the factor‐of‐two envelope for both 

Sacramento and London sites when the background concentrations are included.  However, 

when the background concentrations are not included, approximately half of the points are 

outside the factor‐of‐two envelope, suggesting that model results with CALINE4 and CAL3QHC 

do not match observed increments well, especially for the London site.   
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Sacramento (with background) 

 
 

Sacramento (without background) 

 
 

London (with background) 

 
 

London (without background) 

 
 Figure 5‐1  Factor‐of‐Two Plots (all concentrations are in µg/m3). 
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Table 5‐1  Percentage of Points Falling in the Factor‐of‐two Envelope  
 Sacramento London 

 
With 

background 
Without 

background 
With 

background 
Without 

background 
CALINE4 100% 59% 100% 57% 
CAL3QHC 100% 69% 100% 59% 
AERMOD 100% 48% n/a n/a 
Note: AERMOD was not used for the London site due to limited available meteorological data. 

 

It is important to note that, in this analysis, the factor‐of‐two plots can only serve as screening 

plots, rather than providing a conclusive argument regarding model effectiveness.  In the plots 

with background, the difference between estimated concentration and observed concentration 

is masked by the background, especially when background concentrations are high.  In the plots 

without background, points inside the envelope do not necessarily demonstrate that the 

predictions are good.  For low increment concentrations, a point with good estimation may lie 

outside the envelope.  For high increment concentrations, a point with bad estimation may still 

fall inside the envelope. 

 

5.1.2 Difference Overview and Patterns 

An explicit way to compare the model‐estimated and observed concentrations is to look at their 

differences ( s) and descriptive statistics.  Differences close to zero indicate good model 

performance.   

 

Table 5‐2 shows that, for the Sacramento site, AERMOD produced the largest difference 

between model results and observed concentrations; CALINE4 and CAL3QHC performed better 
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than AERMOD.  The number counts of positive  versus negative  (TABLE 4 part (b)) 

suggest that the three models generally under‐predicted concentrations. 

 Table 5‐2  Difference Overview (values are in µg/m3).  
(a)  Basic Statistics 

      
 Sum Min Max  Sum Average  Sum Average 

Sacramento Site (Sample Size = 29) 
CALINE4 ‐3.0 ‐1.5 2.3  18.2 0.628  20.6 0.710 
CAL3QHC ‐8.3 ‐5.1 1.2  21.3 0.734  40.5 1.397 
AERMOD ‐27.4 ‐8.1 0.8  34.3 1.182  106.4 3.668 

London Site (Sample Size = 253) 
CALINE4 ‐74.9 ‐11.7 16.6  532.5 2.105  2790.0 11.028 
CAL3QHC 20.9 ‐10.8 10.3  522.5 2.065  2331.7 9.216 

where   denotes the absolute value of .   
 
 
(b) Sample Number Count 

 Sacramento (N = 29)  London (N = 253) 
        

CALINE4 18 0 11  140 11 102 
CAL3QHC 17 0 12  116 6 131 
AERMOD 21 0 8  n/a n/a n/a 

Note: AERMOD was not used for the London site due to limited available meteorological data. 
 
 

We also plotted  against observed concentrations to explore their patterns.  As shown in 

Figure 5‐2, when plotted without background concentrations (road increment only), most s 

are larger than zero when the observed concentration is small, and smaller than zero when the 

observed concentration is large.  This suggests that model under‐prediction increases with 

concentration.  When plotted with observed concentration with background, the distribution of 

 is almost symmetric around zero against the observed concentrations, and s seem to 

scatter more widely against higher observed concentrations.  The different patterns shown in 



 
 

27 
 

the two types of plots, with and without background, are due to the much higher background 

concentration than the increment concentrations.   

 

Sacramento (with background) 

 
Sacramento (without background) 

 
Figure 5-2 (part 1)  Pattern of  (all concentrations are in µg/m3). 
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London (with background) 

 
London (without background) 

 Figure 5‐2 (part 2) Pattern of  (all concentrations are in µg/m3). 
 

5.1.3 Correlation between Estimated and Observed Concentrations 

In addition to plotting the differences, we also investigated the overall model performance 

based on the correlation between the estimated and observed concentrations.  A high 

correlation is a necessary, though not sufficient condition of a good match between estimated 

and observed concentrations.   quantitatively measures the correlation (see Table 5‐3).  The 

higher the  value, the more the model‐estimated and observed concentrations correlate.   
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Table 5‐3  R2 correlating model‐predicted and observed concentrations.  
 Sacramento London 

 
With 

background 
Without 

background 
With 

background 
Without 

background 
CALINE4 0.9454 0.8952 0.9009 0.0277 
CAL3QHC 0.9044 0.8973 0.9134 0.0329 
AERMOD 0.7905 0.8513 n/a n/a 
Note: AERMOD was not used for the London site due to limited available meteorological data. 

 

In the Sacramento case, the correlations between estimated and observed concentrations are 

high for all three models in both with and without background scenarios.  In the London case, 

the correlations are high for both models when the background concentrations are included; 

however, the correlations between estimated and observed concentrations without 

background are very small for both CALINE4 and CAL3QHC.  Since the background 

concentrations are very high, the high correlations of both models in the London case are 

mostly due to the background (note that both model‐predicted and observed total 

concentrations include the same background concentration for each data point).   

 

5.2 Statistical Tests 

We developed several statistical tests to investigate the following questions regarding the 

performance of CALINE4, CAL3QHC and AERMOD: a) Are the model‐predicted PM2.5 

concentrations biased? b) Is there a trend of  against observed concentrations? and c) Are 

there significant differences among the three models? 
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5.2.1 Test of Prediction Bias 

We used the one‐sample t‐test to examine the hypothesis that the predicted concentrations 

provided by the three models are not biased.  In order to perform the test, an assumption is 

made for  that  (N is the sample size) are samples from a population with one 

distribution.  As long as N is larger than 29, the central limit theorem can be applied and the 

one‐sample t‐test can be conducted.  Both test statistic and p‐value are calculated.  A criterion 

of 0.05 for p‐value is used; that is, if the p‐value is smaller than 0.05, then we reject the 

hypothesis (i.e., the model is biased).  In this particular case, we can also determine whether 

the model is under or over‐predicting based on the sign of the test statistic.  If the hypothesis is 

rejected, then a negative test statistic indicates under‐predicting, while a positive test statistic 

suggests over‐predicting. 

 

Table 5‐4 presents the test results.  In the Sacramento case, model results from CALINE4 and 

CAL3QHC are not biased, while AERMOD under‐predicts observed concentrations.  For the 

London case, because Figure 5‐2 indicates that the model results tend to over‐predict for low 

increment concentrations and under‐predict for high increment concentrations, the bias test 

was conducted using four categories: Category 1 (Increment concentration is 1 µg/m3), 

Category 2 (Increment concentration is 2 µg/m3), Category 3 (Increment concentration is 3 

µg/m3), Category 4 (Increment concentration is larger than 3 µg/m3).  The test statistics 

suggest that both CALINE4 and CAL3QHC over‐predict for low increment concentrations and 

under‐predict for high increment concentrations. 
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Table 5‐4  Test Results for Prediction Bias.  
(a) Sacramento Case (N = 29) 

  ‐value Conclusion 
CALINE4 ‐0.6643 0.512 Unbiased 
CAL3QHC ‐1.3281 0.195 Unbiased 
AERMOD ‐3.0004 0.0056 Under‐Prediction
 
(b) London Case 

 Category 1 (N = 74) Category 2 (N = 58) 
  ‐value Conclusion  ‐value Conclusion 

CALINE4 5.353 <0.0001 Over‐Prediction 1.354 0.181 Unbiased 
CAL3QHC 7.236 <0.0001 Over‐Prediction 2.998 0.004 Over‐Prediction 

 Category 3 (N = 53) Category 4 (N = 68) 
CALINE4 ‐0.302 0.764 Unbiased ‐5.192 <0.0001 Under‐Prediction 
CAL3QHC 0.761 0.450 Unbiased ‐5.461 <0.0001 Under‐Prediction 
Category 1 (Increment concentration is 1 µg/m3), Category 2 (Increment concentration is 2 µg/m3), Category 3 
(Increment concentration is 3 µg/m3), Category 4 (Increment concentration is larger than 3 µg/m3).   
 
 

5.2.2 Test of Prediction Trend 

We conducted an alternate statistical test to explore the statistical significance of the trend that 

model under‐prediction increases with increased concentration (i.e.,  decrease with 

increasing increment concentrations, as shown in Figure 5‐2).  The hypothesis is that the slope 

of the regression between  and the observed concentration is zero.  If the test shows that 

the slope is significantly less than zero, then we can conclude a statistically significant trend.  Table 5‐5 shows that s decrease as the increment concentrations increase for all three 

models at both sites and the trend is statistically significant.  However, when the background 

concentration is included, only CAL3QHC and AERMOD results at the Sacramento site show this 

trend. 
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Table 5‐5  Test Result for Prediction Trend.  
With background Without background 

 Estimated 
slope ‐value Conclusion 

Estimated 
slope ‐value Conclusion 

Sacrament site (N = 29) 
CALINE4 ‐0.062 0.167  ‐0.131 0.03  
CAL3QHC ‐0.176 0.002  ‐0.396 <0.0001  
AERMOD ‐0.287 0.0004  ‐0.628 <0.0001  
London site (N = 253) 
CALINE4 ‐0.005 0.794  ‐0.806 <0.0001  
CAL3QHC ‐0.019 0.319  ‐0.816 <0.0001  
where  means  stays similar for different observed concentrations; 
            means  becomes smaller when the observed concentration becomes larger (model 
under‐prediction increases as concentrations increase). 

 

 

For the Sacramento case (see Figure 5‐2), there is one point whose increment concentration is 

larger than 12µg/m3 (the increment concentrations for other points are all less than 6.5µg/m3).  

Given the point’s potential influence, we suspect that the trend may simply be caused by this 

one point for the Sacramento case.  Statistical test results show that s decrease as the 

increments increase only for CAL3QHC and AERMOD, but not CALINE4 when this point is 

excluded.  Since the increment concentrations of the remaining points are all less than 

6.5µg/m3, further studies are needed to evaluate the under‐prediction trend with a larger 

spectrum of increment concentrations. 

 

5.2.3 Test for Model Difference 

In this section, the three models are compared by testing whether their estimates are 

statistically different from one another.  Model results from the Sacramento site were used in 
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this test and a one‐factor ANOVA model was constructed.  The ANOVA model specified s as 

the sample results and included one factor with three levels representing the three models 

(level 1 ‐ CALINE4, level 2 ‐ CAL3QHC, and level 3 ‐ AERMOD).  The sample size for each factor 

level is 29. 

 

A hypothesis that the three models are not different from each other can be tested through a 

simultaneous 95% confidence interval for the three combinations of the differences between 

means of the three factor levels, , , and , where ,  and  are the 

means of factor level 1, 2 and 3, respectively.  Using the Bonferroni method, we can get 

confidence intervals between means of factor levels: 

 :  [‐0.642, 1.008] 

 :  [0.015, 1.665] 

 :  [‐0.168, 1.482] 

Since both bounds of the interval of  are positive, the test suggests that predicted 

concentrations from AERMOD are significantly smaller than those provided by CALINE4 at the 

Sacramento site.  This is consistent with the evidence in section 5.2.1 that AERMOD under‐

predicts PM2.5 concentrations.  The interval of  is almost symmetric around 0, which 

indicates that CALINE4 and CAL3QHC produce concentration estimates that are not statistically 

different from each other. 
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5.3 Distribution Patterns 

The previous statistical comparisons assess the models’ ability to simulate concentrations at a 

particular location at a particular time. They provide the most stringent tests of the models and 

establish what can be expected from air quality models with respect to their accuracy and 

precision. For some regulatory applications, it may not be crucial to accurately and precisely 

predict when and where a specific concentration may occur, such as determining compliance 

with an air quality standard. For this and similar purposes, the ability to adequately portray the 

distribution of concentrations occurring in an area unpaired in space and time may suffice. 

Cumulative frequency distribution plots of observed and predicted concentrations have been 

prepared to illustrate this (see Figure 5‐3). Although these diagnostic plots provide a less 

stringent test of the models, the plots are useful for establishing visual patterns; i.e., systematic 

overestimations or underestimation of the observed distributions or even portions of the 

distributions, such as the highest concentrations. 
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Sacramento (without background) 
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 Figure 5‐3  Cumulative Frequency Distributions of Observed Concentrations (solid lines) and Predicted Concentrations (dotted lines) (all concentrations are in µg/m3).
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6 Discussion and Conclusion 

 
In this study, when comparing predicted and observed concentrations, scenarios with and 

without background are considered.  Screen plots and statistical tests show that different 

results may be concluded from the two scenarios.   

 

In the Sacramento case, model results paired in space and time from CALINE4 and CAL3QHC 

match the observed concentrations moderately well, while  AERMOD under‐predicts PM2.5 

concentrations, based on a prediction bias test (section 5.2.1) and confidence intervals of the 

difference between means (section 5.2.3). All three models show a trend of under‐predicting 

the observed values as the increment concentrations increase (section 5.2.2). When the data 

point with an increment concentration of 12µg/m3 is excluded (all remaining data points are of 

increment concentrations less than 6.5µg/m3), statistical test results show that s decrease as 

the increments increase only for CAL3QHC and AERMOD, but not for CALINE4. Therefore, 

further studies are needed to investigate how well the models perform across a larger 

spectrum of road‐increment PM2.5 concentrations. 

 

In the London case, model results paired in space and time from CALINE4 and CAL3QHC do not 

match the observed concentrations (increments, without background). When the increment 

concentrations are small, both models over‐predicted; for high increment concentrations, both 

models under‐predicted. Both models showed a trend of predicting smaller than monitored 

values as the increment concentrations increased. In addition, when the backgrounds are 
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excluded, the predicted concentrations behave as randomly chosen numbers against the 

observed concentration. The  values also show little correlation between model results and 

measured concentrations when the backgrounds are excluded. There are two possible reasons 

for this bad match. First, the receptor at the London site is very close to the road segment. It is 

highly affected by instant nearby traffic and meteorological conditions. However, both models 

assume that the point for which the concentration is estimated achieves a steady state. This 

assumption is therefore not satisfied for the receptor location at the London site. Second, the 

street canyon effect may play an important role in PM dispersion at the London site. Since the 

study site includes numerous high buildings, the street canyon effect results in complex 

meteorology near the receptor. The comparison of London’s results therefore indicates that 

CALINE4 and CAL3QHC are not suitable for estimating concentrations at places where stable 

state is not achieved.  

 

Our comparative assessment suggests that AERMOD under‐estimates near‐road PM2.5 

concentrations at the Sacramento site. This is consistent with two previous studies that have 

shown under‐predicted PM10 concentrations in AERMOD (Kesarkar et al., 2007; Zhang et al., 

2008). Prior works, together with these findings, suggest that AERMOD may be inappropriate 

for estimating PM concentrations near roads. The evidence that AERMOD appears to under‐

predict concentrations, combined with the fact that more meteorological data and more user 

effort is required to run AERMOD, suggest that project‐level analysts may want to run either 

CALINE4 or CAL3QHC as a first choice. 
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Note also, that theoretically, AERMOD can mimic real atmospheric conditions better; however, 

it requires more meteorological data to run, some of which can be difficult to obtain. (In the 

London case, AERMOD was not run because of limited available meteorological data.) 

Moreover, running AERMOD requires more user effort than the other two models due to the 

complexity of the model.  

 

CAL3QHC has an optional queue algorithm. Using this algorithm may better simulate vehicle 

movements in signalized road segments. However, signal‐related parameters and idle emission 

factors are needed in order to make use of the queue algorithm. In many cases, it is not easy to 

specify these parameters. 

 

Another implication from this study is that factor‐of‐two plots are a limited resource for model 

evaluation. Factor‐of‐two plots have been a traditional test of model performance, and several 

previous studies have assessed model performance based solely or largely on the percentage of 

data points falling inside the factor‐of‐two envelope. As shown by this study, factor‐of‐two 

plots assist in screening‐level assessments but lack the statistical detail offered by other tests.  

 

Both the CALINE4 and CAL3QHC models accurately simulate the distribution of observed 

concentrations at the Sacramento and London sites. In the less rigorous comparison of 

predicted and observed concentrations unpaired in space and time, quite an improvement in 

model performances are indicated for the London site, with a slight advantage exhibited by the 

CAL3QHC model. Modelers should keep in mind, however, that this represents a compromised 
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application case, where it is not important to determine when and where a specific 

concentration may occur. AERMOD tended to under‐predict observed concentrations 

throughout most of the distribution as reflected in the statistical comparisons. 
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Appendix A:  Documentation of Steps to Complete Model Runs 

A.1 CALINE4 

Example input file (EX1.INP): 
Sacramento                                  
4PM2.5 
100 0 0 0 3 2 1 1 1 0 
D1 (3m)  
D1 (9m)  
D3 (3m)  
18.3 19.4 3.0  
18.3 19.4 9.0 
74.5 75.6 3.0 
Florin 
Stockton 
1 -150.0 0.0 150.0 0.0 0 32 0 0 0 
1 -41.3 144.2 41.3 -144.2 0.0 28.0 0 0 0 
11101Run 1       
1919 1919  
0.0692 0.0692  
234.9 2.53 2 1000 15.8 0 34.88 
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Explanation of the input file Table A‐ 1  CALINE4 Input Description  
Line 
Number 

Variable Type Unit Example 
input 

Description  

1 Job title Character  Sacramento 40 characters or less 
2 Pollutant Type Integer  4 1 =  CO, 2 = NO2, 3 = Inert Gas, 

4 = Particulate 
 Pollutant 

Name 
Character  PM2.5 30 characters or less 

3 Surface 
roughness 

Real cm 100.0  

 Molecular 
weight 

Real  01  

 Settling 
velocity 

Real cm/s 0  

 Deposition 
velocity 

Real cm/s 0  

 Number of 
receptors 

Integer  3  

 Number of 
links 

Integer  2  

 Scale factor Real  1 Converts roadway geometry 
input variables to meters 

 Link title 
option 

Integer  1 0 = use default titles; 1 = 
specify titles by oneself. 

 Receptor title 
option 

Integer  1 0 = use default titles; 1 = 
specify titles by oneself. 

 Altitude above 
sea level 

Real  0  

4‐6 Receptor 
name 

Character  D1 (3m) 8 characters or less.  (Only 
need to specify when 
‘Receptor title option’ is 1.  
One row for one receptor.) 

7‐9 Receptor 
coordinates X, 
Y, Z 

Real  18.3 19.4 3.0 One row for one receptor. 

10‐11 Link name Character  Florin 12 characters or less.  (Only 
need to specify when 

                                                       
1 “CALINE4 initially computes all concentrations in mass per unit volume.  These results are converted to a 
volumetric equivalent (i.e., parts per million) for gaseous pollutants.” (Benson 1984, pp 49)  ‘Molecular weight’ is 
only used in the converting process.  When modeling PM, the concentrations in the output are in mass per unit 
volume, i.e., the converting process is not performed for modeling PM.  Therefore, ‘Molecular weight’ is not 
involved in the modeling process for PM, and 0.0 is used.  The same argument applies for ‘Altitude above sea 
level’. 
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‘Receptor title option’ is 1.  
One row for one receptor.) 

12‐13 Link type Integer  1 1 = At‐Grade, 2 = Depressed, 3 
= Fill, 4 = Bridge, 5 = Parking 
Lot, 6 = Intersection. 

 Link endpoint 
1 corrdinates 
X, Y 

Real  ‐150.0 0.0  

 Link endpoint 
2 corrdinates 
X, Y 

Real  150.0 0.0  

 Source height Real  0 Should be within ±10m. 
 Mixing zone 

width 
Real  32 Width of traffic lane(s) plus 3 

meters on each side.  (The 
minimum allowable value is 
10m.) 

 Mixing width 
(right) 

Real  0 0 is interpreted as no 
horizontal obstruction. 

 Mixing width 
(left) 

Real  0 0 is interpreted as no 
horizontal obstruction. 

 Continuation 
code 

Integer  0 Equals 1 if endpoint 1 of next 
link coincident with endpoint 
2 of current link. 

14 Run type Integer  1 1 = Standard, 2 = Multi‐run, 3 
= Worst‐case wind angle, 4 = 
Multi‐run/worst‐case hybrid, 9 
= Multi‐run (last run). 

 Traffic volume 
code 

Integer  1 Equals 0 if traffic volume on all 
links unchanged from previous 
run.   

 Emission 
factor code 

Integer  1 Equals 0 if emission factors for 
all links unchanged from 
previous run. 

 Intersection 
parameter 
code 

Integer  0 Equals 0 if intersection 
parameters unchanged from 
previous run.  (In the example, 
no intersection parameters 
are specified, so 0 is used.) 

 Meteorology 
code 

Integer  1 Equals 0 if meteorology 
unchanged from previous run. 

 Run title Character  Run 1 12 characters or less. 
15 Hourly traffic 

volumes by 
link 

Real veh/hr 1919 Lists in one row, different links 
separated by spaces. 

16 Composite 
emission 
factors by link 

Real g/VMT 0.0692 Lists in one row, different links 
separated by spaces. 
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17 Wind direction Real degree 234.9 The direction the wind is 
blowing from, measured 
clockwise in degrees from the 
north.  (This parameter is not 
used in calculation if “Worst‐
Case” is selected.) 

 Wind speed Real m/s 2.53  
 Atmospheric 

stability class 
Integer  2 Values 1 through 7 correspond 

to the standard definitions for 
stability class A through G.   

 Mixing height Real m 1000 “Mixing height algorithm is 
primarily meant for study of 
special case nocturnal 
inversion, and may be bypass 
by assigning a value of 1000 
meters or greater.” (Benson, 
1984)(pp.100) 

 Wind direction 
standard 
deviation 

Real degree 15.8  

 Ambient 
concentration 

Real ppm 0 “The program automatically 
sums the contributions from 
each link to each receptor.  
After this has been completed 
for all receptors, an ambient 
value is added.” (Benson, 
1984) (pp.32) Therefore, the 
ambient concentration is not 
involved in the calculation of 
increment.   

 Temperature Real °C 34.88  
Source: The description of input variables uses information from the technical report documentation of 

CALINE4 (Benson, 1984). 
 

To execute the program, at the DOS prompt, go the directory with the executable program 

(caline4_50.exe) and the input file, type: 

  caline4_50   <input file name>   output file name 

 For example:  caline4_50   <EX1.INP>   EX1.OUT 
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Example output file (EX1.OUT): 
 
 
            CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL 
                     JUNE 1989 VERSION 
                     PAGE   1 
 
                JOB: Sacramento                               
                RUN: Run 1        
          POLLUTANT: PM2.5                          
          (NOTE: OUTPUT IN MICRO-GRAMS/METER**3.  IGNORE PPM LABEL) 
 
    I.  SITE VARIABLES 
 
           U=   2.5 M/S             Z0= 100.  CM            ALT=     0.  (M)  
         BRG= 234.9 DEGREES         VD=  0.0 CM/S 
        CLAS=     2 (B)             VS=  0.0 CM/S 
        MIXH= 1000.  M              AMB=  0.0 PPM 
       SIGTH=   16.  DEGREES       TEMP= 34.9 DEGREE (C) 
 
 
   II.  LINK VARIABLES 
 
        LINK      *  LINK COORDINATES (M)   *              EF     H     W   
     DESCRIPTION  *   X1    Y1    X2    Y2  * TYPE  VPH  (G/MI)  (M)   (M)  
  ----------------*-------------------------*------------------------------ 
  A.  Florin      *  -150     0   150     0 *  AG   1919   0.1    0.0  32.0 
  B.  Stockton    *   -41   144    41  -144 *  AG   1919   0.1    0.0  28.0 
 
 
  III.  RECEPTOR LOCATIONS  
 
              *    COORDINATES (M)  
    RECEPTOR  *    X      Y      Z 
  ------------*--------------------- 
  1.  D1 (3m)  *     18     19   3.0 
  2.  D1 (9m)  *     18     19   9.0 
  3.  D3 (3m)  *     75     76   3.0 
 
 
   IV.  MODEL RESULTS (PRED.  CONC.  INCLUDES AMB.) 
 
              * PRED  * CONC/LINK 
              * CONC  *   (PPM) 
   RECEPTOR   * (PPM) *   A    B 
 -------------*-------*---------- 
  1.  D1 (3m)  *   3.9 *  2.3  1.6 
  2.  D1 (9m)  *   0.4 *  0.3  0.1 
  3.  D3 (3m)  *   1.5 *  0.9  0.6 
 
 



 
 

49 
 

 

A.2 CAL3QHC 

Example input file (EX2.OUT):  
'Sacramento 1'  60 100 0 0 3 1 0 0 
'D1(3m)' 18.3 19.4 3.0 
'D1(9m)' 18.3 19.4 9.0 
'D3(3m)' 74.5 75.6 3.0 
'number 1' 2 1 1 'P' 
  1 
'Florin'   'AG' 150.0 0.0   -150.0 0.0    1919  0.0692 0 32 
  1 
'Stockton' 'AG' -41.3 144.2 41.3   -144.2 1919  0.0692 0 28 
2.53 234.9 2 1000 0  'Y' 16 -1 1 

 

Explanation of the input file Table A‐ 2  CAL3QHC Input Description  
Line 
Number 

Variable Type Unit Example input Description  

1 ‘Job title’ Character  ‘Sacramento 1’ 40 characters or less 
 Averaging time Real min 60 Should be within the range 

of 30 min to 60 min. 
 Surface 

roughness 
Real cm 100  

 Settling velocity Real cm/s 0  
 Deposition 

velocity 
Real cm/s 0  

 Number of 
receptors 

Integer  3 Max = 60 

 Scale factor Real  1 Converts roadway 
geometry input variables to 
meters 

 Metric 
conversion in 
output option 

Integer  0 0 = output in meters, 1 = 
output in feet. 

 Debugging 
option 

Integer  0 0 = debugging option not 
wanted, 1 = input data 
echoed onto the screen, 
the echoing process stops 
when an error is detected. 

2‐4 ‘Receptor 
name’ 

Character  ‘D1 (3m)’ 20 characters or less. 
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 Receptor 
coordinates X, 
Y, Z 

Real  18.3 19.4 3.0  

5 Run title Character  ‘Run 1’ 40 characters or less. 
 Number of links Integer  2 Max = 120 
 Number of 

meteorological 
conditions 

Integer  1 Unlimited number. 

 Output option Integer  1 0 = summary output (short 
format), 1 = output that 
includes the receptor‐link 
matrix tables (long format). 

 ‘MODE’ Character  ‘P’ ‘C’ = CO, ‘P’ = PM 
6 & 8 IQ Integer  1 1 = free flow, 2 = queue 

links. 
7 & 9 ‘Link name’ Character  ‘Florin’ 20 characters or less 
 ‘Link type’ Character  ‘AG’ ‘AG’ = at grade, ‘FL’ = fill, 

‘BR’ = bridge, ‘DP’ = 
depressed. 

 Link endpoint 1 
corrdinates X, Y 

Real  ‐150.0 0.0  

 Link endpoint 2 
corrdinates X, Y 

Real  150.0 0.0  

 Hourly traffic 
volumes by link 

Real veh/hr 1919  

 Composite 
emission 
factors by link 

Real g/VMT 0.0692  

 Source height Real  0 Should be within ±10m. 
 Mixing zone 

width 
Real  32 Width of traffic lane(s) plus 

3 meters on each side.   
10 Wind speed Real m/s 2.53  
 Wind direction Real degree 234.9 The direction the wind is 

blowing from, measured 
clockwise in degrees from 
the north.   

 Atmospheric 
stability class 

Integer  2 Values 1 through 7 
correspond to the standard 
definitions for stability 
class A through G.   

 Mixing height Real m 1000 “Mixing height should be 
generally set at 
1000m.”(USEPA, 1995, 
pp.34) 

 Ambient 
concentration 

Real ppm 0 Same explanation as in 
CALINE4. 
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 ‘Wind direction 
variation’ 

Character  ‘Y’ ‘Y’ = allow wind direction 
to vary, ‘N’ = use only the 
specified wind direction. 

 Wind direction 
increment 
angle 

Integer  16 

 First increment 
multiplier 

Integer  ‐1 

 Last increment 
multiplier 

Integer  1 

These three variables are 
not used in the case that 
‘N’ is specified for ‘Wind 
direction variation’; 
however, these three 
variables have to be 
specified in order for the 
program to run.  If ‘Y’ is 
specified for ‘Wind 
direction variation’,  
concentration under wind 
direction from first 
increment to last 
increment will be displayed 
in the output. 

Source: The description of input variables uses information from the User’s Guide to CAL3QHC (USEPA, 

1995). 

 

To execute the program, at the DOS prompt, go the directory with the executable program 

(CAL3QHC.exe) and the input file, type: 

  CAL3QHC   input file name   output file name 

 For example:  CAL3QHC   EX2.INP   EX2.OUT 

 

Example output file (EX2.OUT):  
 

            CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221            PAGE  1 
 
      JOB: Sacramento 1                                         RUN: Run 1                                    
 
      DATE :  6/23/ 8 
      TIME :  1:20:38 
 
         The MODE flag has been set to P for calculating PM averages. 
 
       SITE & METEOROLOGICAL VARIABLES   
       ------------------------------- 
       VS =   0.0 CM/S       VD =   0.0 CM/S       Z0 = 100.  CM 
       U =  2.5 M/S    CLAS =   2  (B)    ATIM =  60.  MINUTES    MIXH =  1000.M   AMB =  0.0 ug/m**3 
 
       LINK VARIABLES 
       --------------  
     LINK DESCRIPTION * LINK COORDINATES (M)  *   LENGTH BRG TYPE VPH    EF     H     W V/C QUEUE 
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                                      *   X1      Y1      X2       Y2   *      (M)    (DEG)               (G/MI) (M) (M)       (VEH) 
      ------------------------*---------------------------------*---------------------------------------------------------- 
       1.  Florin                 * 150.0     0.0  -150.0      0.0 *     300.  270.  AG   1919.  0.1   0.0 32.0 
       2.  Stockton             *  -41.3 144.2     41.3 -144.2 *     300.  164.  AG   1919.  0.1   0.0 28.0 
 
 
                                                                 PAGE  2 
      JOB: Sacramento 1                                         RUN: Run 1                                    
 
      DATE :  6/23/ 8 
      TIME :  1:20:38 
 
 
       RECEPTOR LOCATIONS 
       ------------------ 
                                      *           COORDINATES (M)          * 
         RECEPTOR         *           X          Y           Z                * 
     -------------------------*------------------------------------------* 
      1.  D1(3m)                *        18.3       19.4        3.0              * 
      2.  D1(9m)                *        18.3       19.4        9.0              * 
      3.  D3(3m)                *        74.5       75.6        3.0              * 
 
       MODEL RESULTS 
       ------------- 
 
       REMARKS : In search of the angle corresponding to 
                 the maximum concentration, only the first 
                 angle, of the angles with same maximum 
                 concentrations, is indicated as maximum. 
 
 WIND ANGLE RANGE: 219.-251. 
 
 WIND     * CONCENTRATION  
 ANGLE   *      (ug/m**3) 
 (DEGR)   * REC1  REC2  REC3  
 ------------*-------------------------- 
 219.          *    3.        1.         1. 
 235.          *    3.        1.         1. 
 251.          *    3.        1.         1. 
 ------------*--------------------------- 
 MAX       *     3.        1.         1. 
 DEGR.    *  234      218      218 
 
 THE HIGHEST CONCENTRATION OF      3.  ug/m**3 OCCURRED AT RECEPTOR REC1 . 
 
 
                                                                 PAGE  3 
      JOB: Sacramento 1                                         RUN: Run 1                                    
 
      DATE :  6/23/ 8 
      TIME :  1:20:38 
 
 
      RECEPTOR - LINK MATRIX FOR THE ANGLE PRODUCING 
      THE MAXIMUM CONCENTRATION FOR EACH RECEPTOR 
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                 *    PM/LNK(ug/m**3) 
                 *    ANGLE (DEGREES) 
                 *  REC1  REC2  REC3  
   LINK #  *   234      218      218 
   ------------*---------------------------- 
       1         *   1.4       0.4       0.5 
       2         *   1.3       0.4       0.4 
 
 

We can get the predicted PM2.5 concentration in ‘PAGE 3’ of the output file. 
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A.3 AERMOD 

Before running AERMOD, two meteorological data files should be prepared first by AERMET.  

The basic process of AERMET is displayed in the following figure. 

Source: 

this figure is reproduced from the User’s Guide for AERMET (USEPA, 2004c). Figure A‐ 1  AERMET Process 
 

In stage 1, AERMET extracts Raw Hourly Surface Observations and Raw Upper Air Soundings 

from standard National Climatic Data Center (NCDC) formats.  Then quality assessment will be 

performed on these data and Raw On‐site data.  These data are merged in stage 2.  AERMET 

generates two meteorological data files based on these data in stage 3.  The two 

meteorological data files are used as inputs for AERMOD. 

 

Because we do not have Hourly Surface Observations or Upper Air Soundings in 

standard NCDC formats and the NCDC formats are specially coded, we generate two 

files in formats that can be used as inputs for stage 2 directly.  For example, in the 

Sacramento case, two files, SAC_SF.OQA and SAC_UA.OQA are generated (Table A‐3).  

(‘SF’ denotes ‘Surface observation’, ‘UA’ denotes ‘Upper Air soundings’, and ‘OQA’ 

denotes ‘Output from Quality Assessment’.)  95082312    -9 99999 99999   999  0099 09999 
09999 09999 09999 09999 09999  
          9999  9999    99   999 99999   349   999   999    24    23    25 



 
 

55 
 

 Table A‐ 3  Explanation of Surface Observation Input for Stage 2  
Line  Variable Example 

Input 
Description Missing 

indicator 
Lower 
bound 

Upper 
bound

1 Hour 95082312 Year (2 digits), month (2 digits), 
day (2 digits), hour1 (2 digits) of 
the local standard time2. 

   

 PRCP ‐9 Precipitation amount 
(millimeters), multiplied by 1000. 

‐9 0 25400

 SLVP 99999 Sea level pressure (millibars), 
multiplied by 10. 

99999 9000 10999

 PRES 99999 Station pressure (millibars), 
multiplied by 10. 

99999 9000 10999

 CLHT 999 Ceiling height (kilometers), 
multiplied by 10. 

999 0 300

 TSKC 0099 Total sky cover3 (code, 2 digits), 
opaque sky cover (code, 2 digits).  
(In this case, total sky cover is 
clear and opaque sky over is 
missing.) 

9999 0 1010

 C2C3 09999 0, Sky cover 2 layers (code, 2 
digits), Sky cover 3 layers (code, 2 
digits). 

09999  

 CLC1 09999 0, Sky condition (code, 2 digits), 
Sky coverage (code, 2 digits), 
layer 1. 

09999  

 CLC2 09999 0, Sky condition (code, 2 digits), 
Sky coverage (code, 2 digits), 
layer 2. 

09999  

 CLC3 09999 0, Sky condition (code, 2 digits), 
Sky coverage (code, 2 digits), 
layer 3. 

09999  

 CLC4 09999 0, Sky condition (code, 2 digits), 
Sky coverage (code, 2 digits), 
layer 4. 

09999  

2 CLT 09999 0, Cloud type (code, 2 digits), 
height (tenths of kilometers, 2 
digits). 

09999  

 PWVC 9999 Present weather 9999 0 9800

                                                       
1 Hour ‘01’ represents the time slot from 0:00am to 1:00am, and so on. 
2 Local Standard Time is the time without daytime saving in this case. 
3 Sky condition code: 00 – clear or less than 0.1 coverage; 01 – thin scattered 0.1 to 0.5 coverage; 02 – scattered 
0.1 to 0.5 coverage; 03 – thin broken 0.6 to 0.9 coverage; 04 – broken 0.6 to 0.9 coverage; 05 – thin overcast 1.0 
coverage; 06 – overcast 1.0 coverage; 07 – obscuration 1.0 coverage; 08 – partial obscuration <1.0 coverage; 09 – 
unknown. 



 
 

56 
 

 PWTH 9999 Precipitation type 9999 0 9800

 ASKY 99 ASOS sky condition, divided by 
10. 

99 0 10

 ACHT 999 ASOS ceiling (kilometers), 
multiplied by 10. 

999 0 888

 HZVS 99999 Horizontal visibility (kilometers), 
multiplied by 10. 

99999 0 1640

 TMPD 349 Dry bulb temperature (oC), 
multiplied by 10.  (In this case, 
the dry bulb temperature is 
34.88, multiplied by 10 gives 
348.8 and the nearest integer is 
349.) 

999 ‐300 360

 TMPW 999 Wet bulb temperature (oC), 
multiplied by 10. 

999 ‐650 350

 DPTP 999 Dew‐point temperature (oC), 
multiplied by 10. 

999 ‐650 350

 RHUM 24 Relative humidity (percent) 999 0 100

 WDIR 23 Wind direction (degree), divide 
by 10.  (In this case, the wind 
direction is 234.9, divided by 10 
given 23.49 and 23 is the nearest 
integer.) 

999 0 36

 WSPD 25 Wind speed (m/s), multiplied by 
10.  (the actual wind speed is 
2.5m/s in this situation.) 

999 0 500

Source: The descriptions of input variables, missing indicators, lower bounds and  upper bounds use 

information from the User’s Guide for AERMET(USEPA, 2004c). 

 

 

The following gives a base unit of the ‘Upper Air Observation’ input file for stage 2 by showing 

the upper air sounding information of August 23, 1995.  For each variable, integers are used 

(numbers with decimals will cause the executable file to fail).  For the complete file, the upper 

air characteristics of every day from August 23 to 26 are listed.  (The explanation of the base 

unit is shown in Table A‐ 4.) 
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95082304   16 
  10130      6    150    130    270     30 
  10000    115    145    135    262     30 
   9250    785    258    -27    279     40 
   8500   1522    217     24    204     40 
   7000   3166     91   -146    192    110 
   5000   5869    -49   -290    222     80 
   4000   7586   -165   -376    252     60 
   3000   9684   -318   -502    233    140 
   2500  10945   -410   -573    230    130 
   2000  12431   -507   -655    225    150 
   1500  14246   -647   -770    225    190 
   1000  16681   -693   -806    222     90 
    700  18831   -645   -768    207     50 
    500  20910   -610   -738    157     20 
    300  24158   -525   -670     84     90 
    200  26799   -486   -637     91     70 

 

 Table A‐ 4  Explanation of Upper Air Sounding Input for Stage 2  
Line Variable Example 

input 
Description 

1 Hour 95082304 Year (2 digits), month (2 digits), day (2 digits), hour (2 
digits) of the local standard time. 

 Level number 16 Number of levels in this sounding 
2‐17 UAPR 10130 Atmospheric pressure (millibars), multiplied by 10. 
 UAHT 6 Height above ground level (meters). 
 UATT 150 Dry bulb temperature (oC), multiplied by 10. 
 UATD 130 Dew‐point temperature (oC), multiplied by 10. 
 UAWD 270 Wind direction (degrees from north). 
 UAWS 30 Wind speed (m/s), multiplied by 10. 
Source: The descriptions of input variables use information from the User’s Guide for AERMET(USEPA, 

2004c). 
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Input file for Running Stage 2 (AERMET2.INP):  

 
JOB 
    REPORT     SAC_S2.RPT # File records all messages 
    MESSAGES   SAC_S2.MSG # File records run summary 
 
UPPERAIR 
    QAOUT      SAC_UA.OQA # Input file with Surface Observations 
 
SURFACE 
    QAOUT      SAC_SF.OQA # Input file with Upper Air Soundings 
 
MERGE 
    OUTPUT     SAC_MR.MET # Output file with merged data 
 
    XDATES     95/08/23 95/08/26 # Time period included in the 
output 

 

Texts after # are explanations, and the explanations are not included in the file for execution. 

 

To execute AERMET2.INP, put AERMET2.INP, SAC_UA.OQA, SAC_SF.OQA and AERMET.exe in 

the same folder, change AERMET2.INP to AERMET.INP, double click AERMET.exe, then three 

files will be generated (their names are specified in the AERMET2.INP): SAC_S2.RPT, 

SAC_S2.MSG, and SAC_MR.MET, where SAC_MR.MET is the merged file. 
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Input file for running stage 3 (AERMET3.INP):  

JOB 
    REPORT    SAC_S3.RPT # File records all messages 
    MESSAGES  SAC_S3.MSG # File records run summary 
 
METPREP 
    DATA      SAC_MR.MET # Input meteorological data 
 
    OUTPUT    SAC_MP.SFC # Output file with boundary laywer 
    PROFILE   SAC_MP.PFL # Output file with profile data 
 
    LOCATION  OAK 122.22W 37.75N 8  
 
    METHOD    REFLEVEL  SUBNWS 
    NWS_HGT   WIND      6.1 
    FREQ_SECT ANNUAL 1 
    SECTOR    1    0     360 
    SITE_CHAR 1 1  0.16  2.0  1 

 

Texts after # are explanations, and the explanations are not included in the file for execution.  

The last six lines are explained in Table A‐ 5. 

 Table A‐ 5  Explanation of Part of AERMET3.INP  
Line Variable Example input Description 

LOCATION Name OAK The name of station where the upper air 

sounding data are from. 

 Location 122.22W 37.75N Longitude and latitude of the station. 

 Factor 8 The factor to convert local standard time 

to GMT1. 

METHOD  REFLEVEL  SUBNWS To substitute NWS data in the 

computations when there is no site‐

specific data. 

NWS_HGT  WIND  6.1 The height at which the wind is 

measured.  (here 6.1m) 

FREQ_SECT Time 

Frequency 
ANNUAL Annual – one frequency; Seasonal – four 

frequencies; Monthly – twelve 

frequencies. 

                                                       
1 GMT is the Greenwich Mean Time.  The factor to convert Local Standard Time of station ‘OAK’ to GMT is 8. 
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 Wind Sector 1 Number of wind sectors, at least 1, at 

most 12. 

SECTOR Sector ID 1  

 Wind range 0 360 Wind ranges from all wind sectors add to 

cover the full circle. 

SITE_CHAR Frequency ID 1  

 Sector ID 1  

 Midday 

albedo 
0.16 Referring to Table 4‐1 in the User’s Guide 

for AERMET(USEPA, 2004c) 

 Daytime 

Bowen ratio 
2.0 Referring to Table 4‐2b in the User’s 

Guide for AERMET(USEPA, 2004c) 

 Surface 

roughness 

length 

(meters) 

1 Referring to Table 4‐3 in the User’s Guide 

for AERMET(USEPA, 2004c) 

 

To execute AERMET3.INP, put AERMET3.INP, SAC_MR.MET and AERMET.exe in the same folder, 

change AERMET3.INP to AERMET.INP, double click AERMET.exe, then four files will be 

generated (their names are specified in the AERMET2.INP): SAC_S3.RPT, SAC_S3.MSG, 

SAC_MP.SFC and SAC_MP.PFL, where SAC_MP.SFC and SAC_MP.PFL are meteorological input 

files for AERMOD. 

 

Input file for Running AERMOD (AERMOD.INP): 

                                                                                          
CO STARTING    # Start of Control Pathway                                  
   TITLEONE Sacramento  # Main title of the run 
   MODELOPT  CONC   FLAT 
   AVERTIME  1   # 1 hour average will be calculated  
   POLLUTID  PM   # Pollutant type is PM  
   FLAGPOLE  3.0                                                              
   RUNORNOT  RUN   # Run the model regardless the any errors 
   ERRORFIL  ERRORS.OUT  # File records errors 
CO FINISHED     # End of Control Pathway                                    
                                                                                          
SO STARTING    # Start of Source Pathway 
   ELEVUNIT  METERS  # Specify the unit to be meters 
   LOCATION  FLORIN1  AREA  -150.0 -16.0 0.0 
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   SRCPARAM  FLORIN1  0.000000716293 0.0 300.0 32.0 0 
   LOCATION  STOCKT1  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT1  0.000000818621 0.0 300.0 28.0 74 
   LOCATION  FLORIN2  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN2  0.000001411563 0.0 300.0 26.0 0 
   LOCATION  STOCKT2  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT2  0.000001613214 0.0 300.0 22.0 74 
   LOCATION  FLORIN3  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN3  0.000000702860 0.0 300.0 26.0 0 
   LOCATION  STOCKT3  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT3  0.000000803269 0.0 300.0 22.0 74 
   LOCATION  FLORIN4  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN4  0.000002401797 0.0 300.0 26.0 0 
   LOCATION  STOCKT4  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT4  0.000002744911 0.0 300.0 22.0 74 
   LOCATION  FLORIN5  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN5  0.000000724245 0.0 300.0 26.0 0 
   LOCATION  STOCKT5  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT5  0.000000827708 0.0 300.0 22.0 74 
   LOCATION  FLORIN6  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN6  0.000000249375 0.0 300.0 26.0 0 
   LOCATION  STOCKT6  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT6  0.000000285000 0.0 300.0 22.0 74 
   LOCATION  FLORIN7  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN7  0.000000703702 0.0 300.0 26.0 0 
   LOCATION  STOCKT7  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT7  0.000000804231 0.0 300.0 22.0 74 
   LOCATION  FLORIN8  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN8  0.000000168490 0.0 300.0 26.0 0 
   LOCATION  STOCKT8  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT8  0.000000192560 0.0 300.0 22.0 74 
   LOCATION  FLORIN9  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN9  0.000000215894 0.0 300.0 26.0 0 
   LOCATION  STOCKT9  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT9  0.000000246736 0.0 300.0 22.0 74 
   LOCATION  FLORIN10  AREA  -150.0 -16.0 0.0 
   SRCPARAM  FLORIN10  0.000000160547 0.0 300.0 26.0 0 
   LOCATION  STOCKT10  AREA  -54.8 140.3 0.0 
   SRCPARAM  STOCKT10  0.000000183482 0.0 300.0 22.0 74 
   SRCGROUP  GROUP1 FLORIN1 STOCKT1 
   SRCGROUP  GROUP2 FLORIN2 STOCKT2 
   SRCGROUP  GROUP3 FLORIN3 STOCKT3 
   SRCGROUP  GROUP4 FLORIN4 STOCKT4 
   SRCGROUP  GROUP5 FLORIN5 STOCKT5 
   SRCGROUP  GROUP6 FLORIN6 STOCKT6 
   SRCGROUP  GROUP7 FLORIN7 STOCKT7 
   SRCGROUP  GROUP8 FLORIN8 STOCKT8 
   SRCGROUP  GROUP9 FLORIN9 STOCKT9 
   SRCGROUP  GROUP10 FLORIN10 STOCKT10 
SO FINISHED         # End of Source Pathway         
 
RE STARTING    # Start of Receptor Pathway 
   DISCCART 18.3 19.4 3.0 # x,y,z coordinates of receptor 1 
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   DISCCART 18.3 19.41 9.0 # x,y1,z coordinates of receptor 2 
   DISCCART 74.5 75.6 3.0 # x,y,z coordinates of receptor 3 
RE FINISHED    # End of Receptor Pathway               
 
ME STARTING     # Start of Meteorology Pathway                   
   SURFFILE  SAC_MP.SFC  # Input file with Surface Observations 
   PROFFILE  SAC_MP.PFL  # Input file with Upper Air Soundings 
   SURFDATA  0  1995  OAK,CA  # Surface meteorological station info. 
   UAIRDATA  0  1995  OAK,CA # Upper Air meteorological station info. 
   SITEDATA  0  1995    # Site-specific meteorological station info. 
   PROFBASE  0.0  METERS # Specifies the base elevation above MSL2 
ME FINISHED    # End of Meteorology Pathway                   
 
OU STARTING    # Start of Output Pathway 
   MAXTABLE  ALLAVE  300     # Output the first 300 concentrations3                    
OU FINISHED    # End of Output Pathway 
 
 
Texts after # are explanations, and the explanations are not included in the file for execution.  

Lines without explanations are explained in Table A‐ 6. 

 Table A‐ 6  Explanation of Part of AERMOD.INP  
Line Variable Example input Description 
CO ‐ MODELOPT  CONC “Specifies that concentration 

values will be calculated.” 
  FLAT “Specifies that non‐default option 

of assuming flat terrain will be 
used.” 

CO ‐ FALGPLOE  3.0 Specifies the default receptor 
height.  If the receptor height is 
specified in the Receptor pathway, 
it will override the default value 
given here. 

SO ‐ LOCATION Name FLORIN1 Name of the source 
 Type AREA Type of the source 
 Location ‐150.0 ‐16.0 0.0 x,y,z‐coordinates of the source.  

The point of the source is 
determined referring to Figure 3‐1 
in the User’s Guide for AERMOD 
(USEPA, 2004a). 

                                                       
1 The y‐coordinate of receptor is modified from 19.4 to 19.41.  The reason is that the output uses x,y‐coordinates 
to distinguish receptors, and receptor 1 and 2 will be of no difference.  The modification is done to make them 
differ from each other while it is not affect the outputs for receptor 2. 
2 MSL = Mean Sea Level 
3 300 is used because the output will then cover all receptors throughout every hour of the 4 days (3 receptors * 
96 hours <300). 
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SO – SRCPARAM Name FLORIN1  
 Area emission 

rate  in g/(s‐ 
m2) 

0.000000716293  

 Source height 0.0  
 Xinit 300.0 Length of X side of the area 
 Yinit 32.0 Length of Y side of the area 
 Angle 0.0 “Orientation angle for the 

rectangular area in degrees from 
North, measured positive in the 
clockwise direction.” 

SO ‐ SRCGROUP Group Name GROUP1 The output will give PM 
concentration from each group. 

 Sources FLORIN1  STOCKT1 Sources considered in the group. 
 

To execute AERMOD.INP, put AERMOD.INP, SAC_MP.SFC, SAC_MP.PFL and AERMET.exe in the 

same folder, double click AERMET.exe, then two files will be generated (their names are 

specified in AERMOD.INP): ERRORS.OUT and AERMOD.OUT.  We can get the predicted PM2.5 

concentrations in AERMOD.OUT. 
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Appendix B:  Abbreviations 

AERMET = AERmod’s METeorological data preprocessor (a meteorological data preprocessor 

for AERMOD) 

AERMOD = American Meteorological Society (Ams) and U.S.  Environmental Protection Agency 

(Epa) Regulatory MODel 

CAL3QHC = CALINE3 with Queuing and Hot‐spot Calculations 

CALINE3 = California LINE source dispersion model version 3 

CALINE4 = California LINE source dispersion model version 4 

CBL = Convective Boundary Layer 

EPA = Environmental Protection Agency 

GMT = Greenwich Mean Time 

MSL = Mean Sea Level 

PM = Particulate Matter 

PM2.5 = Particulate Matter less than 2.5 µm 

PM10 = Particulate Matter less than 10 µm 

PBL = Planetary Boundary Layer 

SBL = Stable Boundary Layer 

 

 

 

 

 

 


